Mutant PIK3CA Induces EMT in a Cell Type Specific Manner
نویسندگان
چکیده
Breast cancer is characterized into different molecular subtypes, and each subtype is characterized by differential gene expression that are associated with distinct survival outcomes in patients. PIK3CA mutations are commonly associated with most breast cancer subtypes. More recently PIK3CA mutations have been shown to induce tumor heterogeneity and are associated with activation of EGFR-signaling and reduced relapse free survival in basal subtype of breast cancer. Thus, understanding what determines PIK3CA induced heterogeneity and oncogenesis, is an important area of investigation. In this study, we assessed the effect of mutant PIK3CA together with mutant Ras plus mutant p53 on oncogenic behavior of two distinct stem/progenitor breast cell lines, designated as K5+/K19- and K5+/K19+. Constructs were ectopically overexpressed in K5+/K19- and K5+/K19+ stem/progenitor cells, followed by various in-vitro and in-vivo analyses. Oncogene combination m-Ras/m-p53/m-PIK3CA efficiently transformed both K5+/K19- and K5+/K19+ cell lines in-vitro, as assessed by anchorage-independent soft agar colony formation assay. Significantly, while this oncogene combination induced a complete epithelial-to-mesenchymal transition (EMT) in K5+/K19- cell line, mostly epithelial phenotype with minor EMT component was seen in K5+/K19+ cell line. However, both K5+/K19- and K5+/K19+ transformed cells exhibited increased invasion and migration abilities. Analyses of CD44 and CD24 expression showed both cell lines had tumor-initiating CD44+/CD24low cell population, however transformed K5+/K19- cells had more proportion of these cells. Significantly, both cell types exhibited in-vivo tumorigenesis, and maintained their EMT and epithelial nature in-vivo in mice tumors. Notably, while both cell types exhibited increase in tumor-initiating cell population, differential EMT phenotype was observed in these cell lines. These results suggest that EMT is a cell type dependent phenomenon and does not dictate oncogenesis.
منابع مشابه
Aspirin exerts high anti-cancer activity in PIK3CA-mutant colon cancer cells
Evidence suggests that nonsteroidal anti-inflammatory drug aspirin (acetylsalicylic acid) may improve patient survival in PIK3CA-mutant colorectal carcinoma, but not in PIK3CA-wild-type carcinoma. However, whether aspirin directly influences the viability of PIK3CA-mutant colon cancer cells is poorly understood. We conducted in vitro experiments to test our hypothesis that the anti-proliferativ...
متن کاملTumor and Stem Cell Biology Cooperation between Pik3ca and p53 Mutations in Mouse Mammary Tumor Formation
PIK3CA, which codes for the p110a catalytic subunit of phosphatidylinositol 3-kinase, is one of the most frequently mutated genes in human breast cancer. Here, we describe a mouse model for PIK3CA-induced breast cancer by using the ROSA26 (R26) knock-in system, in which targeted Pik3ca alleles can be activated through transgenic expression of Cre recombinase. We mated Pik3ca and Pik3ca knock-in...
متن کاملCooperation between Pik3ca and p53 mutations in mouse mammary tumor formation.
PIK3CA, which codes for the p110α catalytic subunit of phosphatidylinositol 3-kinase, is one of the most frequently mutated genes in human breast cancer. Here, we describe a mouse model for PIK3CA-induced breast cancer by using the ROSA26 (R26) knock-in system, in which targeted Pik3ca alleles can be activated through transgenic expression of Cre recombinase. We mated Pik3ca(H1047R) and Pik3ca(...
متن کاملHOTAIR Induces the Downregulation of miR-200 Family Members in Gastric Cancer Cell Lines
Background: Gastric cancer (GC) is the fourth most common human malignancy and the second reason for cancer morbidity worldwide. Long noncoding RNA (LncRNA) HOX transcript antisense RNA (HOTAIR) has recently emerged as a promoter of metastasis in various cancer types, including GC, through the epithelial‑mesenchymal transition (EMT) process. However, the exact mechanism of HOTAIR in promoting E...
متن کاملRepression of p63 and induction of EMT by mutant Ras in mammary epithelial cells.
The p53-related transcription factor p63 is required for maintenance of epithelial cell differentiation. We found that activated forms of the Harvey Rat Sarcoma Virus GTPase (H-RAS) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) oncogenes strongly repress expression of ∆Np63α, the predominant p63 isoform in basal mammary epithelial cells. This regulation occ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016